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ABSTRACT
The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under
extreme conditions. However, accurate determination of the spatial and temporal characteristics of a laser pulse is still a great chal-
lenge, especially when laser powers higher than hundreds of terawatts are involved. In this paper, by utilizing the radiative spin-flip
effect, we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense
lasers with peak intensities around 1020–1022 W/cm2. With three shots, our machine-learning-assisted model can predict, simultane-
ously, the pulse duration, peak intensity, and focal radius of a focused Gaussian ultrafast ultraintense laser (in principle, the profile
can be arbitrary) with relative errors of 0.1%–10%. The underlying physics and an alternative diagnosis method (without the assis-
tance of machine learning) are revealed by the asymptotic approximation of the final spin degree of polarization. Our proposed scheme
exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters. Accurate measurements of
ultrafast ultraintense laser parameters will lead to much higher precision in, for example, laser nuclear physics investigations and
laboratory astrophysics studies. Robust machine learning techniques may also find applications in more general strong-field physics
scenarios.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140828

I. INTRODUCTION

Recent rapid advances in ultrafast ultraintense laser
technology1,2 have opened up broad prospects for vital inves-
tigations in laser–plasma physics,3–5 laser nuclear physics,6,7

laboratory astrophysics,8,9 and particle physics.10,11 In particular,
laser systems with peak intensities in the hundreds of terawatt
to multi-petawatt ranges have achieved laboratory intensities

of the order of 1020–1022 W/cm2, recently even reaching ∼1023

W/cm2 with a pulse duration of tens of femtoseconds.12 These
achievements are paving the way for explorations of strong-field
quantum electrodynamics (SF-QED), among other significant
applications. Meanwhile, the unprecedented laser intensities not
only cause large fluctuations in the laser output (∼1%–20% in
peak power12), but also make accurate determination of the laser
parameters increasingly difficult. These parameters play key roles
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throughout the laser-driven physical processes. For instance, in
detection of the quantum radiation reaction effects, energy loss
of the scattered electron beam serves as the SF-QED signal and is
strongly correlated with the laser intensity and pulse duration.13,14

In the fast ignition of inertial confinement fusion, specific and
precise pulse duration and intensity (∼ 1020 W/cm2) of the ignition
laser are required for improving the energy conversion from
laser to fuel and suppressing uncertainties in the laser–plasma
interactions.6,15 In laser–plasma acceleration, the peak intensity and
pulse duration affect the electron and proton acceleration efficiency
and stability.16–18 Uncertainties in the focal spot, pulse duration, and
intensity of the laser pulse can lead to significant deviations from the
parameters present in experiments. Thus, accurate determination
of the spatiotemporal properties of ultrafast ultraintense laser
pulses is a fundamental concern for today’s laser–matter interaction
experiments.

Currently, laser spatiotemporal characteristics are diagnosed
via separate measurements: for example, focal spot size via the high-
resolution optical imaging technique12 and temporal pulse duration
via the frequency-resolved optical grating (FROG) technique.19 Both
of these techniques can reach an extremely high resolution, and
their accuracy is limited only by the detector, experimental noise,
or post-processing.19 However, for high-power lasers, the pulse
energy has to reduced by several orders of magnitude to mini-
mize damage to the optical instruments, with the results then being
extrapolated to the case of full laser power.20–22 Owing to nonlinear
effects in the amplifying and focusing systems, the characteristics
of a space–time coupled laser pulse obtained with these methods
may deviate significantly from the exact values.23–25 More reliable
parameter diagnosis may be achieved via laser–matter interactions,
making it possible to directly extract spatial and temporal informa-
tion on ultrafast ultraintense (I0 ≳ 1020 W/cm2) laser pulses. Three
mainstream diagnostic approaches are currently in use. The first of
these is atomic tunneling ionization, in which the nonlinear depen-
dence of the multiple-tunneling-ionization rate on the field strength
can be used to diagnose the laser peak intensity alone, with an accu-
racy of ≲30%–50%. However, the barrier suppression effect destroys
the accuracy, and the atom species needs to be carefully chosen
to match the laser intensity requirements.21,26,27 Second, with vac-
uum acceleration of charged particles, the laser peak intensity, focal
spot size, and pulse duration can be retrieved from particle spec-
tral analysis. Here, though, the prepulse and plasma effects and the
low statistics substantially influence the final spectra, and there-
fore one still needs more elaborate considerations.20,28–31 Third,
SF-QED effects can be used, for example, to predict the laser inten-
sity and pulse duration separately via analysis of the spectra of
electrons,32,33 photons,22,34–36 and positrons,37 with a detection accu-
racy of ≳10% for laser intensities within the range of 1020–1023

W/cm2. Clearly, these methods either require separate diagnoses or
can only measure low-precision laser parameter values (the maxi-
mum inaccuracy can reach ≃50%). Thus, there remains an urgent
need for new detection methods that can achieve high accuracy and
simultaneously diagnose the laser intensity, pulse duration, and focal
information.

Recent studies have indicated that the spin polarization of the
electrons is sensitive to the field strength and profile of the intense
laser pulse and thus can be manipulated by a laser pulse via the
radiative spin-flip effect.38–40 These findings have motivated us to

explore the possibilities of decoding the pulse information from the
spin polarization of the laser-scattered electron beam.

In recent decades, machine learning (ML) techniques have
come to be widely used in particle physics41 and astrophysics,42 and
they are now having an increasing impact on the study of mul-
tiscale, highly nonlinear physical processes such as those arising
in condensed matter physics and quantum materials science.43–45

ML-assisted methods are more specialized than humans in com-
prehending multimodal data (acoustic, visual, and numerical) and
optimizing nonlinear extreme physical systems46 and thus can
save much time and human effort when integrated into working
practices.47,48 In particular, data-driven methods are reshaping our
exploration of extreme physical systems, such as in the interaction of
ultrafast ultraintense lasers with materials.49 The experimental real-
ization of such extreme conditions in millimeter-sized plasmas can
provide laboratory models of astrophysical scenarios.50 The large
quantities of data from such experiments or simulations need to be
systematically managed. For instance, around 150 GB of data can
be generated in each shot of the National Ignition Facility (NIF),
and over 70 GB per minute in the Linac-Coherent-Light-Source
(LCLS).51 Handling data this size is becoming beyond the capa-
bilities of conventional methods, with the consequence that the
underlying physics of the phenomena under study may become
obscured. By contrast, ML-assisted methods can be data-driven and
run in parallel on large-scale central processing unit (CPU) or graph-
ics processing unit (GPU) platforms to extract internal correlations
between desired physical quantities.

In this paper, we propose an ML-assisted method to directly
diagnose the spatiotemporal characteristics (peak intensity, focal
spot size, and pulse duration) of a linearly polarized (LP) laser
pulse, based on spin analysis of nonlinear Compton-scattered elec-
tron beams. The interaction scenario and framework of the ML
algorithm are illustrated in Fig. 1. First, a high-energy transversely
spin-polarized (TSP) electron beam is generated via laser-wakefield
acceleration with polarization degree S̄i, mean energy εi, and beam
radius we;52,53 subsequently, this TSP electron beam is scattered
by an ultrafast ultraintense LP laser (with peak intensity ξ, focal
radius w0 and pulse duration τ) via nonlinear Compton scatter-
ing (NCS). Owing to the radiative spin-flip effect, the degree of

FIG. 1. Left: Three different electron beams propagating along the z direction
with parameters εi , we, and S̄i scatter off the same laser pulse and produce
final spin degrees of polarization S̄ f . Right: Topology of the BPNN used for para-
meter prediction, which takes I⃗j;j=1,2,3 = [εi , we, S̄i , S̄ f , ln(S̄ f /S̄i)] as input data
and produces (ξ, w0, τ) as output; for details, see Sec. II B.
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polarization changes from an initial S̄i to a final S̄ f .38,54,55 The dif-
ference (i.e., degree of depolarization) δS̄ ≡ S̄i − S̄ f will be the key
factor for determining the laser pulse parameters. Finally, the initial
and final electron beam parameters are encoded as a dataset I⃗j, which
is then used to train a neural-network ML algorithm and bench-
mark the training efficiency. Here, E0, ω0, ξ ≡ eE0/mω0, w0, and τ
are the electric field strength, frequency, normalized intensity, focal
radius, and pulse duration, respectively, of the LP laser pulse, and
−e and m are the charge and mass, respectively, of the electron. Rel-
ativistic units with c = h = 1 will be used throughout. In addition,
a one-to-one mapping between the beam parameters (εi, we, S̄i, S̄ f )

and the laser parameters (ξ, w0, τ) can be a formidable task, because
only one output is of relevance, namely, S̄ f . To determine the three
unknown laser parameters (ξ, w0, τ) simultaneously, at least three
sets of output values of S̄ f are required. Therefore, three indepen-
dent beams with different parameter combinations are employed
here. These complex multidimensional relationships can be effec-
tively handled by the neural network topology shown in Fig. 1.
Note that this method can induce a spin depolarization of ≃30% for
1 GeV electrons, and ≃40% for 2 GeV ones (laser parameters ξ ≃ 80
and τ = 14T0). Currently available spin polarimetries for electrons
are based on Mott scattering,56 Møller scattering,57 linear Comp-
ton scattering,58 or more efficient NCS.59 Some recent studies have
indicated that the detection precision of NCS-based polarimetry can
reach about 0.3%,59 which qualifies the spin-based method as a new
type of high-accuracy diagnostic scheme for ultrafast ultraintense
laser pulses.

In Sec. II, a brief description of the Monte Carlo (MC) sim-
ulation method of spin-resolved NCS is given, together with the
simulation parameters. This is followed by an introduction to our
laser-parameter retrieval technique based on ML algorithms (see
Fig. 1) and the associated asymptotic formulas. Numerical results
and a brief discussion are given in Sec. III. Our conclusions are
presented in Sec. IV.

II. SPIN-BASED LASER-PARAMETER DIAGNOSTIC
METHODS

As an illustrative example, diagnosis of a tightly focused laser
with a double-Gaussian (spatial and temporal) distribution is con-
sidered. In principle, the envelope of the laser can be arbitrary, but
should be predetermined via experimental methods, for instance,
from a low-power splitting beam. Once the envelope form is known,
the following methods can be used to retrieve the laser pulse
parameters from the spin diagnosis of the scattered electrons.

A. Spin-resolved NCS and interaction scenario
Our analysis of the radiative spin-flip effect is based on the

MC simulation method proposed in Refs. 38 and 60, in which the
spin-resolved probability of NCS in the laser-beam scattering is con-
sidered in the local constant field approximation (LCFA).38,61 After
emission of a photon, the electron spin state collapses into one of its
basis states defined with respect to an instantaneous spin quantiza-
tion axis (SQA) chosen along the magnetic field in the rest frame
of the electron. In Fig. 1, the laser is linearly polarized along the
x direction, and so its magnetic field component is By. The
SQA tends to be antiparallel to the magnetic field in the rest
frame of the electron. Depolarization amounts to the electron spin

acquiring a certain spin polarization in the y direction, which
is canceled from the net polarization by the periodic magnetic
field, i.e., S̄ f ,y ≈ 0. Therefore, we focus our analysis in what fol-
lows on the electron polarization in the x direction. In NCS,
the invariant parameter characterizing the quantum effects is61,62

χ ≡ e
√

−(Fμνpν)2
/m3, where Fμν and pν denote the electromagnetic

field tensor and the four-momentum of the electron, respectively. In
a colliding geometry, χ ≈ 2ξγeω0/m, where γe denotes the electron’s
Lorentz factor. To excite the radiative spin-flip process, χ should
be in the range of 0.01–1, over which nonlinear Breit–Wheeler pair
production can be suppressed.

The LP laser parameter set for the training data includes wave-
length λ0 = 0.8 μm, focal radius w0 = [2, 3, 4, 5]λ0, peak intensity
ξ = [10, 15, 20, 30, 40, 45, 60, 80], and pulse duration τ = [2, 6, 10, 14]
T0, with T0 denoting the laser period. The probe electron beam has
a polar angle θe = π, azimuthal angle ϕe = 0, and angular divergence
σθ = 0.3 mrad. The initial kinetic energies are εi = [0.5, 1, 1.5, 2]
GeV, with relative energy spread σε/εi = 0.05, and the initial average
degree of spin polarization along the x direction S̄i,x = [0.6, 0.8, 1.0]
(here, χmax ≲ 1, i.e., the pair-production effect on the final electron
distribution is negligible for the present parameters). The beam
radius we = [1, 2, 3, 4]λ0, the beam length Le = 5λ0, and the total
number of electrons is 5 × 105 with transversely Gaussian and longi-
tudinally uniform distributions, attainable by current laser wakefield
accelerators.3

B. Neural network assisted diagnosis
Decoding the spatiotemporal characteristics of an ultrafast

ultraintense laser from information carried by a scattered elec-
tron beam is an inverse transformation that requires multidimen-
sional input and output. In principle, the equation of motion can
be embedded in the neural network, which can predict one laser
parameter with high accuracy. However, predicting three laser para-
meters simultaneously will be inefficient owing to slow real-time
integration of the equation of motion. Here, therefore, a data-driven
standard backpropagation neural network (BPNN) based on the
PyTorch framework is used to train and predict the scattering laser
parameters.63 The input data are composed of the energy, beam
radius, the initial and final average spins, and the logarithm of the
ratio of final spin to initial spin of the electron beam, in the vector
I⃗ ≡ [εi, we, S̄i, S̄ f , ln(S̄ f /S̄i)]; see Fig. 1. About 1000 sets of input data
are obtained via the MC simulation and rearranged/recombined to
about 3 × 104 sets for training. Then the input data (I⃗1, I⃗2, I⃗3) are
normalized via the StandScaler function. After random permu-
tation, the input information is preprocessed by the second-order
polynomial feature function PolynomialFeatures to construct
implicit connections between them.

In our BPNN, we choose eight fully connected hidden layers,
with 128, 256, 512, 512, 512, 512, 256, and 128 nodes respectively.
The numbers of hidden layers and nodes here ensure adequate
prediction accuracy and appropriate computing resources. The acti-
vation functions use tanh and PReLU alternatively between different
layers. The mean squared error MSELoss is used as the loss func-
tion, and the stochastic gradient descent SGD method is used as the
optimizer. After each training iteration, the optimizer clears old gra-
dients, and losses are backpropagated for the calculation of new
gradients. Finally, the network parameters are updated according
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to the new gradients. The initial learning rate is set as 0.3, and the
adjustment factor of the exponential learning rate ExponentialLR
scheduler is set as 0.9. In our calculations, the total number of train-
ing iterations is 4 × 104. To enhance the learning efficiency of the
model on the laser pulse duration τ, we consider two models with
learning ratios of ξ, w0, and τ set as 1:1:1 and 1:1:2, respectively [see
Figs. 2(a) and 2(b)]. Note that the training loss measures the training
efficiency of the model. The training loss may increase as a result of
inappropriate network structure design and will decrease with effec-
tive learning. In the final stable stage, there may be overfitting to the
training data. However, the overfitting can be restrained by using a
technique such as weight upper limit64 or dropout.65 For instance,
the losses of ξ, w0, and τ are reduced for the learning ratio of 1:1:2,
and further increasing the ratio of τ will produce larger losses in
other parameters. This BPNN model will be used in the subsequent
prediction. In principle, the ML-assisted method is not limited to the
current application, but can also be used for other inverse problems.

C. Analytical asymptotic models
Asymptotic estimation of the depolarization effect is done

below analytically from the radiative equations of motion for
the dynamics [the Landau–Lifshitz (LL) equation66] and the
spin [the modified Thomas–Bargmann–Michel–Telegdi (T-BMT)
equation67]. A dependence of the spin dynamics on the electron
energy follows, assuming weak radiation. The quantum-corrected
LL equation is then used to obtain the approximate electron energy,
which is then plugged into the solution for spin dynamics.

The radiative spin evolution is composed of Thomas precession
(subscript T) and radiative correction (subscript R) terms67 and is
governed by

dS
dη
= (

dS
dη
)

T
+ (

dS
dη
)

R
, (1a)

(
dS
dη
)

T
=

eγe

(k ⋅ pi)
S × [−(

g
2
− 1)

γe

γe + 1
(β ⋅ B)β

+ (
g
2
− 1 +

1
γe
)B − (

g
2
−

γe

γe + 1
)β × E], (1b)

FIG. 2. Training loss (mean squared errors for all training samples) evolutions of
ξ, w0, τ, and total loss (tot.) vs training time. Learning ratios of ξ, w0 and τ are
1:1:1 in (a) and 1:1:2 in (b).

(
dS
dη
)

R
= −P[ψ1(χ)S + ψ2(χ)(S ⋅ β)β + ψ3(χ)nB]. (1c)

Here, E and B are the laser electric and magnetic fields, respec-
tively; pi, k, η, and g are the electron momentum 4-vector, the laser
wavevector, the laser phase, and the electron gyromagnetic ratio,
respectively; and

P =
α f m2

√
3 π(k ⋅ pi)

,

ψ1(χ) = ∫
∞

0
u′′ du K2/3(u

′
),

ψ2(χ) = ∫
∞

0
u′′ du∫

∞

u′
dx K1/3(x) − ψ1(χ),

ψ3(χ) = ∫
∞

0
u′′ du K1/3(u

′
),

u′ =
2u
3χ

, u′′ =
u2

(1 + u)3 , u =
εγ

ε0 − εγ
,

where ε0 and εγ are the electron energy before radiation and the
emitted photon energy, respectively, Kn is the nth-order modi-
fied Bessel function of the second kind, and αf = 1/137 is the fine
structure constant. The SQA is chosen along the magnetic field
nB = β × â, with β = v/c the scaled electron velocity and â = a/∣a∣ the
unit vector along the electron acceleration a.

To facilitate theoretical analysis and extract analytical formu-
las, some approximations will be made with the current laser and
electron beam parameters in mind, i.e., a GeV electron beam inter-
acting with an LP laser (ξ < 100) and 0.1 ≲ χ ≲ 1. Owing to laser
defocusing, the Thomas-term-induced variation δST is ≲10−4, and
only the dominant term, i.e., the radiative correction, will be consid-
ered. Furthermore, the initial velocity of the electron beam is along
the z direction, with βz ≫ βx(βy), and thus the ψ2 term is negligible
for initially TSP electrons. Moreover, owing to the periodic nature
of the magnetic field, the contribution of the ψ3 term vanishes on
average within one laser period. Hence, the approximate evolution
of the spin components may be obtained from

dSx

dη
≃

Cψ1(χ)
γe

Sx, (2a)

dSy

dη
≃

Cψ1(χ)
γe

Sy, (2b)

dSz

dη
≃

C(ψ1(χ) + ψ2(χ))
γe

Sz , (2c)

where

C = −
α f

2
√

3π
ω0

m
.

Because ψ1(χ) > 0 and ψ2(χ) < 0, depolarization in the x and y
directions is faster than in the z direction. For instance, for a laser
with parameters ξ = 60, τ = 8T0, and w0 = 5λ0, and the electron
beam of Fig. 4(a), the final average spin degrees of polarization are
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Sx,f ≈ 0.8201, Sy,f ≈ 0.8211, and Sz,f ≈ 0.8741, for S̄i,x = 1, S̄i,y = 1, and
S̄i,z = 1. Thus, in this paper, we take the electron beam to be initially
polarized along the x direction for a larger detection signal.

Under the assumption of weak radiation loss, for which

dγe

dη
≃ 0, χ(η) ≃ 2

ω0

m
γeξ sin2 η,

one can obtain, to the leading-order approximation, ψ1(χ) ≃ f1χ2

for 0.1 ≲ χ ≲ 1, and f1 ≈ 0.25 is obtained by curve fitting. Integrating
Eq. (2a), the asymptotic S̄ f ,x, using the laser-beam parameters, will
be given by

ln[
S̄ f ,x(τ)
S̄i,x(0)

] ≃M1γeξ2 τ, (3)

where the factor

M1 = −

√
3

2
α f
ω0

m
f1 ≈ −4.81 × 10−9

and τ is the pulse duration in units of the laser period T0.
To be precise, the radiated photon energy (radiation loss εγ)

should be taken into account for 0.1 ≲ χ ≲ 1. Here, we use the
quantum-corrected LL equation to include the radiation loss68 via

dP
dt
= FL + Frad, (4a)

Frad = −C′χ2𝒢(χ)β/∣β∣2, (4b)

where FL ≡ q(E + v × B) is the Lorentz force, Frad is the radiation
reaction force, C′ = 2α2

f m/3re (with re the classical electron
radius), and 𝒢(χ) ≃ [1 + 4.8(1 + χ) ln(1 + 1.7χ) + 2.44χ2

]
−2/3 is

the quantum correction function.69 For 0.1 ≲ χ ≲ 1, assuming
χ(η) ≃ (2ω0/m)γeξ sin2 η and making the approximation
χ2𝒢(χ) ≃ f 2χ2 (with a fitting factor of f2 ≈ 0.077), the radia-
tion loss (averaged over all electrons, i.e., ignoring the stochastic
effect) is given by

εγ = ∫
η

0
dη Frad

dt
dη
≃M2τγ2

eξ
2,

where M2 = (παfω0/m) f2 ≈ 5.36 × 10−9. Then, replacing γe in
Eq. (3) by γe − εγ, an analytical asymptotic estimate of the final spin
S̄ f ,x is given by

ln [
S̄ f ,x(τ)
S̄i,x(0)

] ≃M1γeξ2τ(1 −M2γeξ2τ). (5)

III. RESULTS AND DISCUSSION
To demonstrate the efficiency of the proposed diagnostic

method, some operational parameters of petawatt-scale lasers at a
number of international facilities will be used; see Table I. The corre-
sponding depolarization processes, investigated via MC simulations,
indicate that the relative errors between the predicted and input
parameters are of orders 0.1%–10%; see Fig. 3(a). After consecu-
tive training, the BPNN model grasps the pattern of the radiative

TABLE I. Operational parameters of some international ultrafast ultraintense laser
facilities: total energy EL, central wavelength λ, peak intensity I0, pulse duration τ,
and focal radius w0.

Project
EL
(J)

λ
(μm) I0 (W/cm2); ξ

τ (fs);
T0

w0
(λ)

ELI-NP70 20 0.82 5.6 × 1021; 52.43 18.75; 6.86 3.63
J-KAREN71 28.4 0.8 3.8 × 1021; 42.14 32.9; 12.33 4.75
GIST72 44.5 0.81 1022; 69.21 30; 11.1 3.79
SILEX-II73 30 0.8 5 × 1020; 15.28 30; 11.24 6.16
APOLLON74 10 0.815 2 × 1021; 31.14 24; 8.83 2.92

spin-flip effect and is therefore capable of accurately predicting the
laser characteristics, i.e., (ξ, τ, w0), simultaneously. Owing to the
limited weighting parameters and training data, the relative pre-
diction errors for ξ, τ, and w0 (simultaneously) are of the order
of ℛ1(2) ≲ 10%; see Figs. 3(b) and 3(c). Compared with cases with
w0 ≳ 3λ0, the number of electrons scattered by a tightly focused laser
(w0 ≲ 3λ0) is lower, owing to the small Rayleigh range (zR = πw2

0/λ).
Thus, the beam-averaged spin-flip effect is relatively more sensitive
to variations in the electron beam parameters, and the relative error
ℛ1 is larger for w0 ≲ 3λ0 [see Fig. 3(b)]. For a laser radius w0 ≳ 5λ0,
which is already beyond the current training range, a certain amount
of overfitting is expected. For SILEX-II, for example, the relative

FIG. 3. (a) Relative errors ℛ = (ℛξ ,ℛτ ,ℛw) between predicted and the-
oretical values of (ξ, τ, w0) for the facilities in Table I, where I⃗1, I⃗2, and
I⃗3 are respectively (εi = 1 GeV, we = λ0, S̄i,x = 1) (εi = 1 GeV, we = 3λ0,
S̄i,x = 1), and (εi = 1.5 GeV, we = λ0, S̄i,x = 1). (b) Distribution of total relative

error ℛ1 =

√

ℛ2
ξ +ℛ

2
w in the ξ–w0 plane, where τ = 10T0 and (I⃗1, I⃗2, I⃗3) are

the same as in (a). (c) Distribution of total relative error ℛ2 =

√

ℛ2
ξ +ℛ

2
τ in

the ξ–τ plane, where w0 = 5λ0, and I⃗1, I⃗2, and I⃗3 are respectively (εi = 500 MeV,
we = λ0, S̄i,x = 1) (εi = 500 MeV, we = 4λ0, S̄i,x = 0.8), and (εi = 2 GeV, we = λ0,
S̄i,x = 0.6).

Matter Radiat. Extremes 8, 034401 (2023); doi: 10.1063/5.0140828 8, 034401-5

© Author(s) 2023

https://scitation.org/journal/mre


Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

error in the focal radius ℛw ∼ 15%. Moreover, for a specific ξ, the
electron energy will damp rapidly within a certain τ, and the depo-
larization will saturate owing to the much smaller χ ≪ 1. From the
aspect of the ML algorithm, there might occur a sharp gradient along
the pulse duration. As a consequence, for long pulse duration τ, the
complete prediction will be inaccurate and the growth in the relative
errors will be quite rapid (owing to the limited training datasets). For
instance, the relative errors in the cases of J-KAREN and SILEX-II
are relatively large in Fig. 3(a), and similar trends can also be found
in Fig. 3(c). In addition, as another key parameter for the NCS, once
the peak intensity ξ is too small (i.e., when χ will also be too small
via χ ∝ γeξ), the statistical error in the MC calculation will increase
and the prediction will be inaccurate, too. For instance, the relative
errors for SILEX-II and APOLLON are larger than that of ELI-NP;
see Fig. 3(a) and the general trends in Fig. 3(c). Therefore, for short
pulse duration τ and large intensity ξ, the relative errors will be lower
than those in other cases, for instance, in the upper-left region of
Fig. 3(c), ℛ can reach the order of ≲0.1%. It can be foreseen that with
a larger network size, i.e., more weighting parameters, the model will
be more accurate and robust.

The physical essence of the ML-assisted pulse information
decoding method is revealed by our analytical asymptotic estimation
on the basis of Eq. (5), which is in good agreement with the numer-
ical MC results over a wide range of laser parameter values; see

FIG. 4. (a) and (b) Transverse spin degrees of depolarization of the probe electron
beams δS̄x ≡ S̄i,x − S̄ f ,x vs laser peak intensity ξ and pulse duration τ: (a) δS̄MC

x

calculated by the MC method; (b) δS̄AE
x calculated by asymptotic estimation from

Eq. (5). Here, a laser radius w0 = 5λ0, a probe electron beam energy εi = 1 GeV,
a beam radius we = λ0, and an initial average spin S̄i,x = 1 are used. Other para-
meters are the same as in Fig. 3. (c) Relative error ℛs = ∣δS̄MC

x − δS̄AE
x ∣/δS̄MC

x
vs ξ and τ. (d) δS(ξ, τ) = 0.12 [white circles P1(ξ = 50, τ = 6T0) in (a)–(c)]
for we = 1λ0 (solid line) and we = 4λ0 (dash-dotted line). (e) S̄x vs laser phase
η ≡ ω0(t − z). The solid and dashed black lines (averaged MC evolution process)
correspond to the blue circles P2(ξ = 50, τ = 8T0) and P3(ξ = 50, τ = 12T0)

in (a)–(c), respectively. The blue lines and circles indicate the analytical cal-
culations (only related to the final laser phase ηf ). (f) S̄x vs laser phase η.
The solid and dashed lines correspond to the red circles P4(ξ = 40, τ = 6T0)

and P5(ξ = 60, τ = 6T0) in (a)–(c), respectively. Black lines are from the aver-
aged MC evolution calculation and red circles (right axis) are from the analytical
calculations.

Figs. 4(a)–4(c). The distributions of δS̄MC,AE
x with respect to ξ and τ

are shown in Figs. 4(a) and 4(b), where superscripts “MC” and “AE”
denote the results from the MC and analytical asymptotic estimation
(AE) methods, respectively. As expected, δS̄x increases as ξ and τ
both increase, and a specific spin change δS̄x determines a curve that
binds ξ with τ (or a hyperplane for ξ, τ, and w0), i.e., the NCS acts as a
nonlinear functionℱ(⋅, ⋅) that maps the laser pulse parameters (ξ, τ)
to the degree of depolarization of the electron beam ℱ(ξ, τ)→ δS̄x.
Quite remarkably, the corresponding relative error ℛs in the para-
meter ranges of ξ ∈ (10, 60) or τ ∈ (2, 6)T0 is ℛs ≃ 1%; see Fig. 4(c).
With the analytical AE extracted subject to the condition 0.1 < χ ≲ 1,
and for ξ > 60 and τ > 6, the low-order estimation deviates from the
MC result, owing to the nonlinear radiative effects. By contrast, the
ML-assisted method is data-driven, i.e., the algorithms can still grasp
the correlations between laser pulse parameters and depolarization
of the electron beam, without artificial restrictions; see the prediction
accuracy (the total relative error ℛ2 ∼ 1%) for high laser intensity
and long pulse duration in Fig. 3(c).

Figure 4(d) illustrates how to determine ξ and w0 via AE for
a specific set of parameters (ξ = 50, τ = 6T0, and w0 = 5λ0) marked
as white circles P1 in Figs. 4(a)–4(c). Here, the pulse duration τ
is pre-acquired with other diagnostics, for instance, from the low-
power mode of detection. Then, a sub-micrometer probe is collided
with the laser pulse, from which one obtains δS̄1; see the solid line
labeled “1λ0” in Fig. 4(d), which has been obtained from Eq. (5).
After that, a second probe with beam radius we = 4λ0 produces
δS̄2, the dot-dashed line labeled “4λ0” in Fig. 4(d). According to
Eq. (5), two average intensities ξ̄1 and ξ̄2 can be determined from δS̄1
and δS̄2, respectively, corresponding to different beam radii. Since
w0 ≫ we, the average laser intensity sensed by the sub-micrometer
probe can serve approximately as the peak intensity in the focusing
region. Thus, ξ̄1 = 51.62 is identified as the peak intensity of the laser
pulse, with a relative error of 3.2%, whereas ξ̄2 = 42.96, correspond-
ing to we = 4λ0, is taken as the average intensity within the probe
radius, i.e., ξ̄2 = ξ̄1∫

we
−we

exp(−r2
/w2

0) dr. Numerical calculation gives
the focal radius w0 = 5.18λ0, with a relative error of 3.6%. Note that
in Eq. (5), once τ (or ξ) is given, the map between δS̄ and the other
parameter is uniquely fixed. For instance, in Fig. 4(d), once ξ is fixed
[points P2 and P3 in Figs. 4(a)–4(c)], there will be only one intersec-
tion (the final phase ηf ) between Eq. (5) and the temporal evolution
of the average spin. Here, S̄(η f ) is the final degree of polarization of
the electron beam. Conversely, once τ is fixed [points P4 and P5 in
Figs. 4(a)–4(c)], the MC final results will evolve to a unique ξ value;
see Fig. 4(f).

Compared with the signals from dynamical statistics, the degree
of spin polarization is more accurate and more robust with respect
to fluctuations in energy and angular spread of the electron beam
probe; see Figs. 5(a)–5(d). As the initial energy spread σε/εi varies
from 1% to 30%, the average energy (ε̄ f ∼ 500 MeV) of the final
electron beam (we = 1λ0, εi = 1 GeV) changes by ∼1%; see Fig. 5(a).
However, the effect of energy spread on the spin polarization S̄ f ,x of
the final state is ∼0.3%; see Fig. 5(c). According to Eq. (5) express-
ing the analytical AE, Sf ∼ exp(−k1γe) and δSf ∼ δγek1 exp(−k1γe),
which leads to the conclusion that the spin variations due to dynam-
ics exhibit exponential decay. Similarly, while the initial angular
spread σθ changes from 0.3 to 100 mrad, the normalized variation
of angular spread Nθ is ∼30%, and the effect on the spin S̄ f ,x is
∼0.2%. In short, the detection accuracy of the spin signal is one to
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FIG. 5. Impact of probe electron beam parameters on detection signals. (a) Final
average kinetic energies ε̄ f vs initial energy spreads σε/εi of probe electron
beams (σθ = 0.3 mrad). Lines marked with triangles, circles, and diamonds denote
probe electrons with different beam radii and energies. The initial spin polarization
S̄i,x = 1, and the laser parameters are the same as in Fig. 4(d). (b) Relative
changes in angular spread Nθ = (Δθf ,x − Δθi,x)/Δθf ,x vs initial angular spread
σθ (σε/εi = 0.05) of probe electron beams, where Δθi,x and Δθf ,x denote the full
widths at half maximum (FWHM) of the initial and final angular spectra along the
x direction, and θx = arctan(px/pz). (c) and (d) Final transverse spin degrees of
polarization of scattered electron beams S̄ f ,x vs σε/εi and σθ, respectively. (e)
and (f) Relative errors ℛ vs σε/εi and σθ, respectively. The red and blue lines are
the relative errors from analytical asymptotic estimation and BPNN, respectively.
Lines marked with triangles, circles, and diamonds denote ℛ of ξ, w0, and τ,
respectively.

two orders of magnitude higher than that of the dynamic signal. The
relative errors ℛ of the analytical AE and ML-assisted spin signals
are shown in Figs. 5(e) and 5(f). Owing to angular and energy spread,
the relative errors ℛ of the analytical AE, for ξ and w0, are both
kept within 5%, while the ML-assisted method can simultaneously
predict three parameter values for ξ, w0, and τ, with relative errors
ℛ ≲ 10%. Especially for w0, the accuracy of the ML-assisted method
is at least twice as good as that of the analytical prediction.

IV. CONCLUSION
We have proposed an ML-assisted method to diagnose the

spatiotemporal properties of an ultrafast ultraintense laser pulse,
namely, the pulse duration τ, peak intensity ξ, and focal spot size
w0, based on the radiative spin-flip effect of the electrons while
they experience strong NCS. Our trained BPNN can accurately
predict the spatiotemporal characteristics of petawatt-level laser sys-
tems with relative errors ≲10%. The proposed method is accurate
and robust with respect to fluctuations in the electron beam para-
meters, and it is suitable for use with currently running or planned

multi-petawatt-scale laser facilities. Accurate measurement of ultra-
fast ultraintense laser parameters may pave the way for future
strong-field experiments, of importance to laser nuclear physics
investigations, laboratory astrophysics studies, and other fields.
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